A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).

Publication Overview
TitleA high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).
AuthorsGaur R, Verma S, Pradhan S, Ambreen H, Bhatia S
TypeJournal Article
Journal NameFunctional & integrative genomics
Year2020
CitationGaur R, Verma S, Pradhan S, Ambreen H, Bhatia S. A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).. Functional & integrative genomics. 2020 Aug 27.

Abstract

Genotyping-by-sequencing (GBS) allows rapid identification of markers for use in development of linkage maps, which expedite efficient breeding programs. In the present study, we have utilized GBS approach to identify and genotype single-nucleotide polymorphism (SNP) markers in an inter-specific RIL population of Cicer arietinum L. X C. reticulatum. A total of 141,639 raw SNPs were identified using the TASSEL-GBS pipeline. After stringent filtering, 8208 candidate SNPs were identified of which ~ 37% were localized in the intragenic regions followed by genic regions (~ 30%) and intergenic regions (~ 27%). We then utilized 6920 stringent selected SNPs from present study and 6714 SNPs and microsatellite markers available from previous studies for construction of linkage map. The resulting high-density linkage map comprising of eight linkage groups contained 13,590 markers which spanned 1299.14 cM of map length with an average marker density of 0.095 cM. Further, the derived linkage map was used to improve the available assembly of desi chickpea genome by anchoring 443 previously unplaced scaffolds onto eight linkage groups. The present efforts have refined anchoring of the desi chickpea genome assembly to 55.57% of the ~ 520 Mb of assembled desi genome. To the best of our knowledge, the linkage map generated in the present study represents one of the most dense linkage map developed for the crop till date. It will serve as a valuable resource for fine mapping and positional cloning of important quantitative trait loci (QTLs) associated with agronomical traits and also for anchoring and ordering of future genome sequence assemblies.

Stocks
This publication contains information about 1 stocks:
Stock NameUniquenameType
ICC4958/PI489777-RIL-2020ICC4958/PI489777-RIL-2020population
Features
This publication contains information about 8,210 features:
Feature NameUniquenameType
CaGBS7784CaGBS7784genetic_marker
CaGBS7785CaGBS7785genetic_marker
CaGBS7786CaGBS7786genetic_marker
CaGBS7787CaGBS7787genetic_marker
CaGBS7788CaGBS7788genetic_marker
CaGBS7789CaGBS7789genetic_marker
CaGBS7790CaGBS7790genetic_marker
CaGBS7791CaGBS7791genetic_marker
CaGBS7792CaGBS7792genetic_marker
CaGBS7793CaGBS7793genetic_marker
CaGBS7794CaGBS7794genetic_marker
CaGBS7795CaGBS7795genetic_marker
CaGBS7796CaGBS7796genetic_marker
CaGBS7797CaGBS7797genetic_marker
CaGBS7798CaGBS7798genetic_marker
CaGBS7799CaGBS7799genetic_marker
CaGBS7800CaGBS7800genetic_marker
CaGBS7801CaGBS7801genetic_marker
CaGBS7802CaGBS7802genetic_marker
CaGBS7803CaGBS7803genetic_marker
CaGBS7804CaGBS7804genetic_marker
CaGBS7805CaGBS7805genetic_marker
CaGBS7806CaGBS7806genetic_marker
CaGBS7807CaGBS7807genetic_marker
CaGBS7808CaGBS7808genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Chickpea-ICC4958/PI489777-RIL-2020
Properties
Additional details for this publication include:
Property NameValue
Publication Date2020 Aug 27
Journal AbbreviationFunct. Integr. Genomics
DOI10.1007/s10142-020-00751-y
Elocation10.1007/s10142-020-00751-y
ISSN1438-7948
eISSN1438-7948
Publication ModelPrint-Electronic
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany