A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).

Publication Overview
TitleA high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).
AuthorsGaur R, Verma S, Pradhan S, Ambreen H, Bhatia S
TypeJournal Article
Journal NameFunctional & integrative genomics
Year2020
CitationGaur R, Verma S, Pradhan S, Ambreen H, Bhatia S. A high-density SNP-based linkage map using genotyping-by-sequencing and its utilization for improved genome assembly of chickpea (Cicer arietinum L.).. Functional & integrative genomics. 2020 Aug 27.

Abstract

Genotyping-by-sequencing (GBS) allows rapid identification of markers for use in development of linkage maps, which expedite efficient breeding programs. In the present study, we have utilized GBS approach to identify and genotype single-nucleotide polymorphism (SNP) markers in an inter-specific RIL population of Cicer arietinum L. X C. reticulatum. A total of 141,639 raw SNPs were identified using the TASSEL-GBS pipeline. After stringent filtering, 8208 candidate SNPs were identified of which ~ 37% were localized in the intragenic regions followed by genic regions (~ 30%) and intergenic regions (~ 27%). We then utilized 6920 stringent selected SNPs from present study and 6714 SNPs and microsatellite markers available from previous studies for construction of linkage map. The resulting high-density linkage map comprising of eight linkage groups contained 13,590 markers which spanned 1299.14 cM of map length with an average marker density of 0.095 cM. Further, the derived linkage map was used to improve the available assembly of desi chickpea genome by anchoring 443 previously unplaced scaffolds onto eight linkage groups. The present efforts have refined anchoring of the desi chickpea genome assembly to 55.57% of the ~ 520 Mb of assembled desi genome. To the best of our knowledge, the linkage map generated in the present study represents one of the most dense linkage map developed for the crop till date. It will serve as a valuable resource for fine mapping and positional cloning of important quantitative trait loci (QTLs) associated with agronomical traits and also for anchoring and ordering of future genome sequence assemblies.

Stocks
This publication contains information about 1 stocks:
Stock NameUniquenameType
ICC4958/PI489777-RIL-2020ICC4958/PI489777-RIL-2020population
Features
This publication contains information about 8,210 features:
Feature NameUniquenameType
CaGBS2489CaGBS2489genetic_marker
CaGBS2490CaGBS2490genetic_marker
CaGBS2491CaGBS2491genetic_marker
CaGBS2492CaGBS2492genetic_marker
CaGBS2493CaGBS2493genetic_marker
CaGBS2494CaGBS2494genetic_marker
CaGBS2495CaGBS2495genetic_marker
CaGBS2496CaGBS2496genetic_marker
CaGBS2497CaGBS2497genetic_marker
CaGBS2498CaGBS2498genetic_marker
CaGBS2499CaGBS2499genetic_marker
CaGBS2500CaGBS2500genetic_marker
CaGBS2501CaGBS2501genetic_marker
CaGBS2502CaGBS2502genetic_marker
CaGBS2503CaGBS2503genetic_marker
CaGBS2504CaGBS2504genetic_marker
CaGBS2505CaGBS2505genetic_marker
CaGBS2506CaGBS2506genetic_marker
CaGBS2507CaGBS2507genetic_marker
CaGBS2508CaGBS2508genetic_marker
CaGBS2509CaGBS2509genetic_marker
CaGBS2510CaGBS2510genetic_marker
CaGBS2511CaGBS2511genetic_marker
CaGBS2512CaGBS2512genetic_marker
CaGBS2513CaGBS2513genetic_marker

Pages

Featuremaps
This publication contains information about 1 maps:
Map Name
Chickpea-ICC4958/PI489777-RIL-2020
Properties
Additional details for this publication include:
Property NameValue
Publication Date2020 Aug 27
Journal AbbreviationFunct. Integr. Genomics
DOI10.1007/s10142-020-00751-y
Elocation10.1007/s10142-020-00751-y
ISSN1438-7948
eISSN1438-7948
Publication ModelPrint-Electronic
LanguageEnglish
Language Abbreng
Publication TypeJournal Article
Journal CountryGermany